direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×C4⋊F5, D10.12C24, D10⋊7(C4⋊C4), (C22×C4)⋊9F5, C4⋊2(C22×F5), C20⋊3(C22×C4), (C22×C20)⋊13C4, C2.6(C23×F5), D10.34(C2×D4), C10.5(C23×C4), D10.18(C2×Q8), D5.1(C22×D4), (C23×F5).4C2, (C2×F5).1C23, C23.67(C2×F5), D5.1(C22×Q8), Dic5⋊8(C22×C4), (C4×D5).84C23, (C22×D5).23Q8, (C22×Dic5)⋊21C4, (C22×D5).101D4, D10.46(C22×C4), C22.57(C22×F5), (C22×F5).18C22, (C22×D5).283C23, (C23×D5).138C22, C10⋊(C2×C4⋊C4), D5⋊(C2×C4⋊C4), C5⋊(C22×C4⋊C4), (C2×C4×D5)⋊21C4, (C2×C4)⋊11(C2×F5), (C2×C10)⋊3(C4⋊C4), (C2×C20)⋊12(C2×C4), (C4×D5)⋊19(C2×C4), (D5×C22×C4).31C2, (C2×Dic5)⋊36(C2×C4), (C2×C4×D5).400C22, (C2×C10).99(C22×C4), (C22×C10).81(C2×C4), (C22×D5).134(C2×C4), SmallGroup(320,1591)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×C4⋊F5
G = < a,b,c,d,e | a2=b2=c4=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >
Subgroups: 1386 in 418 conjugacy classes, 196 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, D5, C10, C10, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, F5, D10, D10, C2×C10, C2×C4⋊C4, C23×C4, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C22×C10, C22×C4⋊C4, C4⋊F5, C2×C4×D5, C22×Dic5, C22×C20, C22×F5, C22×F5, C23×D5, C2×C4⋊F5, D5×C22×C4, C23×F5, C22×C4⋊F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, F5, C2×C4⋊C4, C23×C4, C22×D4, C22×Q8, C2×F5, C22×C4⋊C4, C4⋊F5, C22×F5, C2×C4⋊F5, C23×F5, C22×C4⋊F5
(1 49)(2 50)(3 46)(4 47)(5 48)(6 41)(7 42)(8 43)(9 44)(10 45)(11 56)(12 57)(13 58)(14 59)(15 60)(16 51)(17 52)(18 53)(19 54)(20 55)(21 66)(22 67)(23 68)(24 69)(25 70)(26 61)(27 62)(28 63)(29 64)(30 65)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)
(1 29)(2 30)(3 26)(4 27)(5 28)(6 21)(7 22)(8 23)(9 24)(10 25)(11 36)(12 37)(13 38)(14 39)(15 40)(16 31)(17 32)(18 33)(19 34)(20 35)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)
(1 79 9 74)(2 80 10 75)(3 76 6 71)(4 77 7 72)(5 78 8 73)(11 61 16 66)(12 62 17 67)(13 63 18 68)(14 64 19 69)(15 65 20 70)(21 56 26 51)(22 57 27 52)(23 58 28 53)(24 59 29 54)(25 60 30 55)(31 41 36 46)(32 42 37 47)(33 43 38 48)(34 44 39 49)(35 45 40 50)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 59)(2 56 5 57)(3 58 4 60)(6 53 7 55)(8 52 10 51)(9 54)(11 48 12 50)(13 47 15 46)(14 49)(16 43 17 45)(18 42 20 41)(19 44)(21 78 22 80)(23 77 25 76)(24 79)(26 73 27 75)(28 72 30 71)(29 74)(31 68 32 70)(33 67 35 66)(34 69)(36 63 37 65)(38 62 40 61)(39 64)
G:=sub<Sym(80)| (1,49)(2,50)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,44)(10,45)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75), (1,29)(2,30)(3,26)(4,27)(5,28)(6,21)(7,22)(8,23)(9,24)(10,25)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75), (1,79,9,74)(2,80,10,75)(3,76,6,71)(4,77,7,72)(5,78,8,73)(11,61,16,66)(12,62,17,67)(13,63,18,68)(14,64,19,69)(15,65,20,70)(21,56,26,51)(22,57,27,52)(23,58,28,53)(24,59,29,54)(25,60,30,55)(31,41,36,46)(32,42,37,47)(33,43,38,48)(34,44,39,49)(35,45,40,50), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,59)(2,56,5,57)(3,58,4,60)(6,53,7,55)(8,52,10,51)(9,54)(11,48,12,50)(13,47,15,46)(14,49)(16,43,17,45)(18,42,20,41)(19,44)(21,78,22,80)(23,77,25,76)(24,79)(26,73,27,75)(28,72,30,71)(29,74)(31,68,32,70)(33,67,35,66)(34,69)(36,63,37,65)(38,62,40,61)(39,64)>;
G:=Group( (1,49)(2,50)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,44)(10,45)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75), (1,29)(2,30)(3,26)(4,27)(5,28)(6,21)(7,22)(8,23)(9,24)(10,25)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75), (1,79,9,74)(2,80,10,75)(3,76,6,71)(4,77,7,72)(5,78,8,73)(11,61,16,66)(12,62,17,67)(13,63,18,68)(14,64,19,69)(15,65,20,70)(21,56,26,51)(22,57,27,52)(23,58,28,53)(24,59,29,54)(25,60,30,55)(31,41,36,46)(32,42,37,47)(33,43,38,48)(34,44,39,49)(35,45,40,50), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,59)(2,56,5,57)(3,58,4,60)(6,53,7,55)(8,52,10,51)(9,54)(11,48,12,50)(13,47,15,46)(14,49)(16,43,17,45)(18,42,20,41)(19,44)(21,78,22,80)(23,77,25,76)(24,79)(26,73,27,75)(28,72,30,71)(29,74)(31,68,32,70)(33,67,35,66)(34,69)(36,63,37,65)(38,62,40,61)(39,64) );
G=PermutationGroup([[(1,49),(2,50),(3,46),(4,47),(5,48),(6,41),(7,42),(8,43),(9,44),(10,45),(11,56),(12,57),(13,58),(14,59),(15,60),(16,51),(17,52),(18,53),(19,54),(20,55),(21,66),(22,67),(23,68),(24,69),(25,70),(26,61),(27,62),(28,63),(29,64),(30,65),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75)], [(1,29),(2,30),(3,26),(4,27),(5,28),(6,21),(7,22),(8,23),(9,24),(10,25),(11,36),(12,37),(13,38),(14,39),(15,40),(16,31),(17,32),(18,33),(19,34),(20,35),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75)], [(1,79,9,74),(2,80,10,75),(3,76,6,71),(4,77,7,72),(5,78,8,73),(11,61,16,66),(12,62,17,67),(13,63,18,68),(14,64,19,69),(15,65,20,70),(21,56,26,51),(22,57,27,52),(23,58,28,53),(24,59,29,54),(25,60,30,55),(31,41,36,46),(32,42,37,47),(33,43,38,48),(34,44,39,49),(35,45,40,50)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,59),(2,56,5,57),(3,58,4,60),(6,53,7,55),(8,52,10,51),(9,54),(11,48,12,50),(13,47,15,46),(14,49),(16,43,17,45),(18,42,20,41),(19,44),(21,78,22,80),(23,77,25,76),(24,79),(26,73,27,75),(28,72,30,71),(29,74),(31,68,32,70),(33,67,35,66),(34,69),(36,63,37,65),(38,62,40,61),(39,64)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | 4B | 4C | 4D | 4E | ··· | 4X | 5 | 10A | ··· | 10G | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 2 | 2 | 2 | 2 | 10 | ··· | 10 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | - | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | F5 | C2×F5 | C2×F5 | C4⋊F5 |
kernel | C22×C4⋊F5 | C2×C4⋊F5 | D5×C22×C4 | C23×F5 | C2×C4×D5 | C22×Dic5 | C22×C20 | C22×D5 | C22×D5 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 2 | 12 | 2 | 2 | 4 | 4 | 1 | 6 | 1 | 8 |
Matrix representation of C22×C4⋊F5 ►in GL8(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
40 | 39 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 34 | 14 | 0 | 27 |
0 | 0 | 0 | 0 | 0 | 7 | 14 | 27 |
0 | 0 | 0 | 0 | 27 | 14 | 7 | 0 |
0 | 0 | 0 | 0 | 27 | 0 | 14 | 34 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
40 | 39 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 34 | 0 | 7 | 14 |
0 | 0 | 0 | 0 | 0 | 14 | 34 | 7 |
0 | 0 | 0 | 0 | 27 | 7 | 34 | 14 |
0 | 0 | 0 | 0 | 27 | 14 | 7 | 0 |
G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,1,0,0,0,0,0,0,39,1,0,0,0,0,0,0,0,0,1,40,0,0,0,0,0,0,2,40,0,0,0,0,0,0,0,0,34,0,27,27,0,0,0,0,14,7,14,0,0,0,0,0,0,14,7,14,0,0,0,0,27,27,0,34],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,40,40,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[40,0,0,0,0,0,0,0,39,1,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,23,9,0,0,0,0,0,0,0,0,34,0,27,27,0,0,0,0,0,14,7,14,0,0,0,0,7,34,34,7,0,0,0,0,14,7,14,0] >;
C22×C4⋊F5 in GAP, Magma, Sage, TeX
C_2^2\times C_4\rtimes F_5
% in TeX
G:=Group("C2^2xC4:F5");
// GroupNames label
G:=SmallGroup(320,1591);
// by ID
G=gap.SmallGroup(320,1591);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,1123,136,6278,818]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations